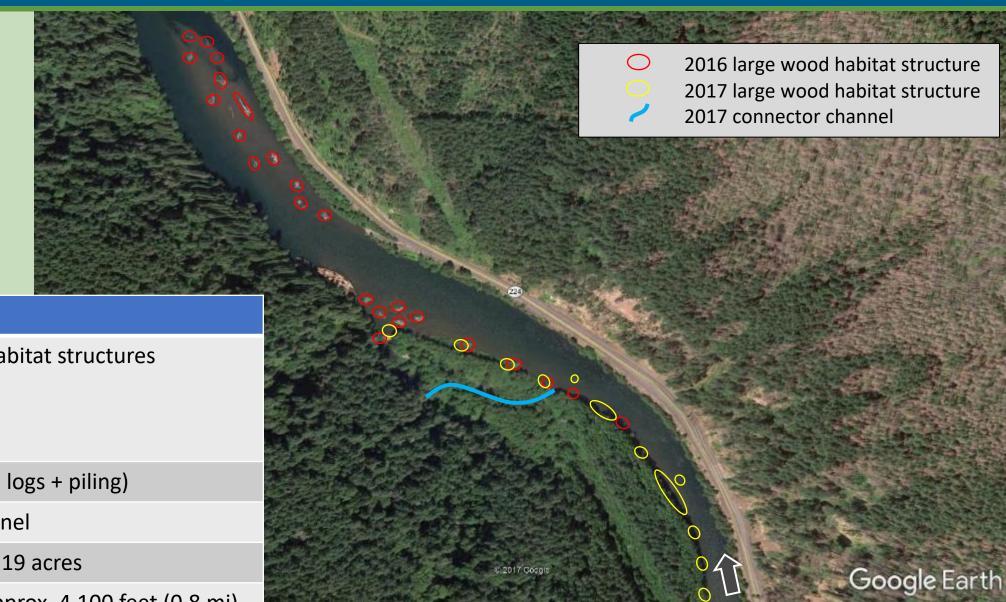
Two Rivers Side Channel and Mainstem Channel Fish Habitat Enhancement Project

Presentation to the Clackamas River Mitigation Fund Committee

Project Team Clackamas River History

As a team


- OGF side channel construction and main channel habitat feature construction (2014)
- North Fork Reservoir Large Wood Fish Enhancement Project (2016, 2017)

Individually

- McBain Associates (MA) since 2001: PGE FERC relicensing, study plan development and program implementation, habitat restoration projects.
- Aquatic Contracting since 2004: habitat restoration projects construction and designbuild.
- USDA-FS since the beginning of time: MHNF Clackamas River Ranger District basinwide fisheries habitat restoration.

North Fork Reservoir Large Wood Fish Habitat Project

PROJECT TOTAL

33 individual large wood habitat structures

- 9 deep water
- 11 shallow water
- 13 apex jams

Approx. 600 logs (root wad logs + piling)

One 640-ft connector channel

Project footprint = approx. 19 acres

Project channel length = approx. 4,100 feet (0.8 mi)

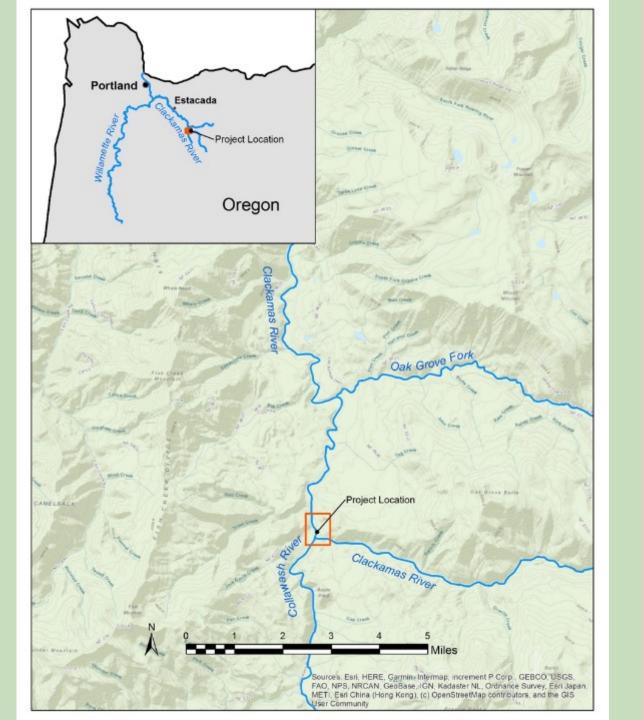
Two Rivers Site Overview

- Site is a 4.25-acre point bar and 1,000 ft side channel, one of the largest bar/side channel combinations upstream of North Fork Reservoir and second largest active alluvial bar on upper Clackamas River between the OGF and the Collawash River.
 - Alluvial bars with flowing side channels provide critical year-round habitat for all salmonid life stages.
 - Site is located 25 miles upriver of North Fork Reservoir, one of only 8 large alluvial bars with side channels exist.
 - Only one additional bar with side channels exist between the site and the OGF confluence (4 mile reach).

Two Rivers Site Overview

- Site's restoration potential recognized and prioritized previously (USDA-FS, WPN).
- USDA-FS habitat enhancement effort in 2010.
 - Increased side channel habitat complexity and habitat availability by adding large wood, boulders, and enhancing pools.
 - High flow events following construction have caused aggradation at the side channel entrance and exit, and redistributed habitat logs.

Two Rivers Site Overview (cont'd)


- Current conditions: summer baseflows backwater into downstream side channel alcove, residual pools maintained via hyporheic flow (no continuous side channel flow until moderate or high mainstem flows).
- Most USDA-FS work is in dry channel during summer months.

Two Rivers Site Overview (cont'd)

- Side channel loss is one of the primary habitat limitations in the upper Clackamas River (WPN 2005)
- Restoring side channel flow and function will provide critical offchannel spawning and rearing habitat for wild early- and late-run Coho, spring-run Chinook, and winter steelhead.

Project goals

- Improve side channel function and habitat.
 - Rebuild, supplement, enhance the USDA-FS work (increase flow and cover habitat)
- Create new main channel cover and spawning habitat.
 - Opportunistically improve habitat in key areas adjacent to proposed side channel work

Project objectives

Side channel: Restore perennial flow, improve fish habitat, maintain sediment transport continuity.

Main channel: Create cover habitat for (a) adult holding and spawning, and (b) juvenile rearing/refugia along the main channel margin.

Proposed actions to achieve goals

Restore perennial side channel flow

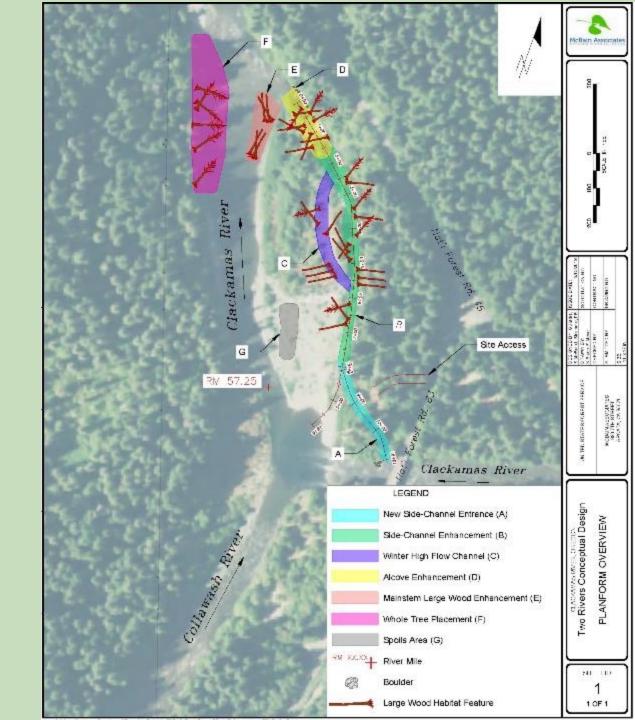
- Supplement existing summer baseflow hyporheic connection with Clackamas River flow for geomorphically stable design.
- Promote sediment transport continuity.

Add large wood

- Add single and aggregated logs to side channel.
- Construct habitat structures along main channel and add whole trees.

Conceptual design features

A. Construct new side channel entrance


- Existing entrance aggraded; dynamic location
- New tie in with Clackamas River; longer term and sustainable

B. Enhance existing side channel

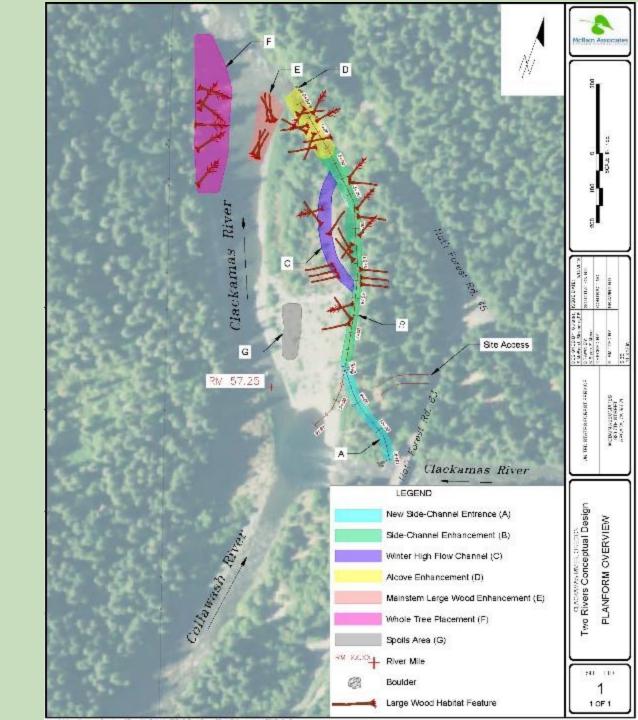
- Enhance and supplement existing USDA-FS work
- Add logs and improve channel gradient

C. Construct winter high flow channel

- New construction to increase winter high flow capacity and keep side channel velocities low
- Add logs for cover and additional velocity refugia

Conceptual design features

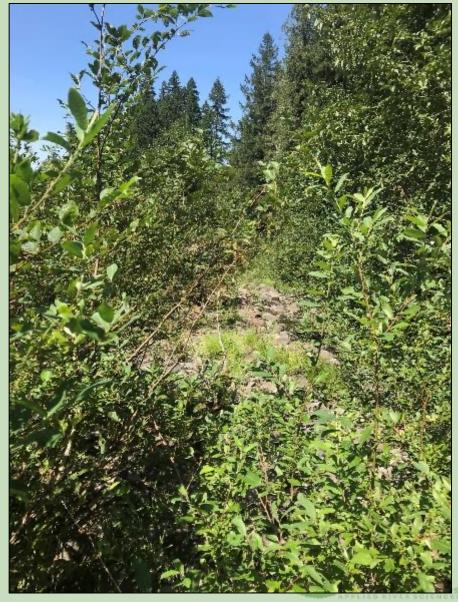
D. Alcove enhancement


- Sediment plug blocks low flow and fish access;
 remove and re-grade
- Connect hydraulically and geomorphically to upstream design features (Areas A-C)

E. Mainstem large wood enhancement

- Construct three large wood habitat structures where currently no structure exists (cover, velocity refugia)
- Design modeled after NF Reservoir habitat structures

F. Mainstem whole tree placements


- Fell or pull over trees directly into channel
- Simulates natural wood recruitment and adds wood where currently none exists

New side channel enterance

- Aggraded side channel entrance.
- Construct new Clackamas River connection to create year-round flow.
- Add large boulders at new entrance to provide hydraulic control.

Enhance existing side channel

- Re-grade existing side channel, add large wood and boulders.
- Promote sediment transport.
- Provide off-channel summer and winter juvenile rearing.
- Provide winter high flow refugia

Mid-channel summer residual pools

Construct new winter high flow channel

- New high flow channel construction along re-graded side channel.
- Increase overall side channel capacity to decrease flow velocities.
- Add logs.
- Provides high flow refugia.

Alcove transition

Sediment plug separating side channel from alcove

Alcove enhancement

- Currently mainstem backwater at low flow
- Upstream sediment plug blocks flow and sediment transport continuity: remove and re-grade
- Add cover with additional logs to supplement USDA-FS logs.
- Provides off-channel rearing habitat and high flow refugia.

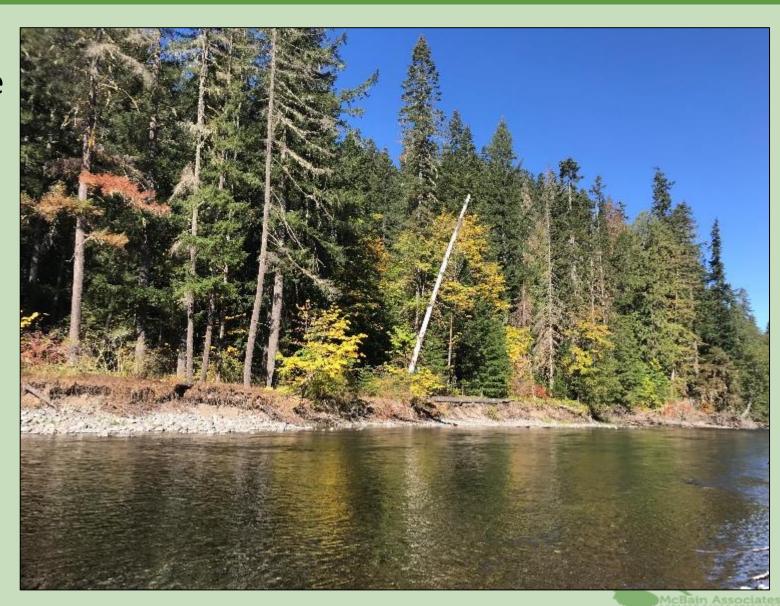
Side channel design components

Alcove from downstream end of sediment plug

Main channel habitat structures

- Currently no cover habitat.
- Hydraulically suitable (channel widens, loses gradient, velocities slow).
- Creates adult cover habitat and velocity refugia.
- Creates fry and juvenile rearing habitat.

Three large wood habitat structures proposed. For each structure:


- 6 to 8 sub-horizontal root wad logs
- 10 to 12 piling logs
 - No Cables, bolts, fasteners (consistent with permit requirements)
- Alluvial ballast

Main channel whole tree placement

- Mature trees along opposite cutbank, pull over into mainstem.
- Creates geomorphic complexity (promotes local scour and deposition).
- Provides fry and juvenile rearing habitat, adult spawning habitat.

Main channel design components

Habitat structure location (n=3 proposed)

Whole tree source area

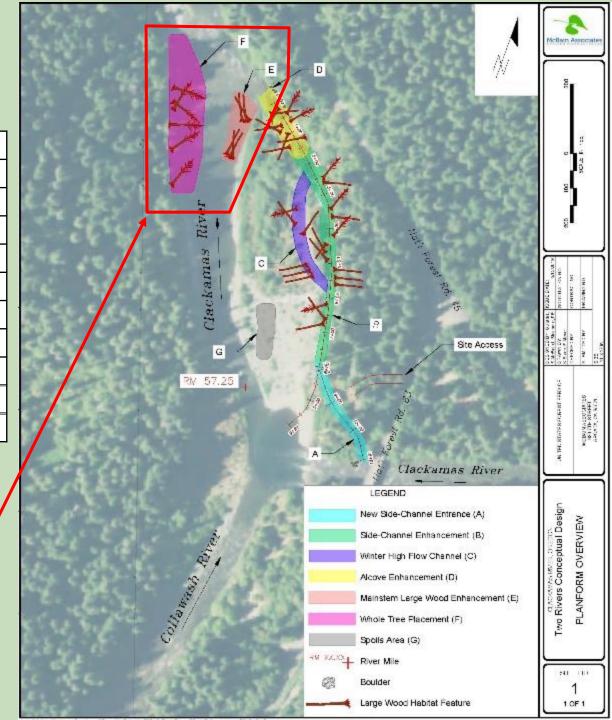
Project design status

Conceptual designs developed, draft and final designs to be prepared

Draft designs

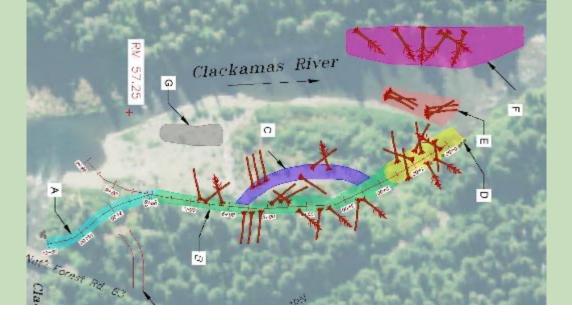
- Data collection: site topography survey, stage monitoring.
- Analysis and modeling: prepare DEM; hydrology, hydraulic modeling.
- Draft (and final) designs developed as project team <u>collaboration</u>.
- Regulatory consultation / ARBO-II pre-reporting and review (design feedback loop).

Final designs


- Will be prepared to a level of detail that provides sufficient construction, but rely on a "field-fit" approach to adapt to site-specific variability
- On-site construction coordination

Proposed project cost

Professional Services					
Project management (including administration of funds)	\$ 32,800				
Plans, designs, permits. Also includes monitoring.	\$ 92,000				
Construction					
Site preparation	\$ 27,200				
Equipment	\$ 71,800				
Materials	\$ 100,500				
Construction	\$ 63,400				
SUBTOTAL (amount requested)	\$ 387,700				
Matching Funds (MA, USFS)	\$ 8,600				
TOTAL	\$ 396,300				


Without mainstem project components: approx. \$310,000

Clackamas Mitigation Fund Two Rivers Side Channel and Mainstem Fish Habitat Enhancement Project																								
	2020										2021													
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
TASK 1: Data collection and analysis																								
Topography (surveys, prepare surface and DEM)										************				**										
Hydrology (stage monitoring, streamflow data correlation)																								
Data processing, hydraulic modeling, analysis																								
TASK 2: Develop designs																								
Identify key stakeholders (e.g., ODFW) and review conceptual designs																								
Develop draft designs																								
Develop final designs, with iterations based on agency comments																								
Final design technical memorandum																								
TASK 3: Permitting																								
Work with stakeholders and regulatory agencies to permit project																								
TASK 4: Materials acquisition, construction, clean up																								
Preparation and coordination																								
Materials sourcing and purchase																								
Materials delivery																								
Equipment mobilization																								
Construction, clean up, equipment de-mob																								
TASK 5: Document as-built conditions and monitoring																								
Documentary photographs, mapping, fish use monitoring																								
Prepare summary technical memorandum of as-built conditions																								
TASK 6: Project management																								
Project management for duration of project	•																							

Questions?

Two Rivers side channel and mainstem habitat enhancement

Map area designation	Conceptual design element	Excavation / earthwork planned?	Planform area (ft²)	Estimated excavation depth (ft)	Estimated excavation volume (yd ³)	Spoils plan	No. logs with root wads to be added	No. piling logs	Notes (see additional description on conceptual drawing)
Α	New side channel entrance	Υ	7,700	5	1,400	Put in Area G	0	-	Assume place boulders at entrance for grade control, use on-site material (no import)
В	Existing side channel enhancement	Υ	18,000	varies, assumed minimal	500	Sidecast	60	-	500 yd ³ estimated for local contouring
С	New winter high flow channel	Υ	11,600	3	1,300	Sidecast or move to Area G	10	-	
D	Alcove enhancement	Υ	12,000	1	400	Sidecast	20	-	Most excavation will be at downstream plug, conservatively estimated 1 ft average excavation depth over entire area.
E	Mainstem Clackamas River large wood habitat structures	Ν		N/A	-	N/A	30	42	Three habitat structures with piling
F	Mainstem Clackamas River whole tree placement	N		N/A	-	N/A	0	-	Cable over large (30" dbh minimum) live trees into river, if allowed
G	Sediment spoils area	Y (spoils pile)		N/A	-	-	0	-	Contingency spoil area if too much material generated to sidecast or not allowed to sidecast at certain locations
1									

 TOTAL
 3,600
 120
 42

 yd3
 RW logs
 Piling